- icosahedral and tetrahedral symmetries
- Макаров: икосаэдрическая и тетраэдрическая симметрии
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Tetrahedral symmetry — A regular tetrahedron has 12 rotational (or orientation preserving) symmetries, and a total of 24 symmetries including transformations that combine a reflection and a rotation.The group of symmetries that includes reflections is isomorphic to S 4 … Wikipedia
Icosahedral symmetry — A Soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. A regular icosahedron has 60 rotational (or orientation preserving) symmetries, and a symmetry order of 120 including transformations that… … Wikipedia
Covering groups of the alternating and symmetric groups — In the mathematical area of group theory, the covering groups of the alternating and symmetric groups are groups that are used to understand the projective representations of the alternating and symmetric groups. The covering groups were… … Wikipedia
Polyhedron — Polyhedra redirects here. For the relational database system, see Polyhedra DBMS. For the game magazine, see Polyhedron (magazine). For the scientific journal, see Polyhedron (journal). Some Polyhedra Dodecahedron (Regular polyhedron) … Wikipedia
Group (mathematics) — This article covers basic notions. For advanced topics, see Group theory. The possible manipulations of this Rubik s Cube form a group. In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines … Wikipedia
Group action — This article is about the mathematical concept. For the sociology term, see group action (sociology). Given an equilateral triangle, the counterclockwise rotation by 120° around the center of the triangle acts on the set of vertices of the… … Wikipedia
Point groups in three dimensions — In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries… … Wikipedia
ADE classification — The simply laced Dynkin diagrams classify diverse mathematical objects. In mathematics, the ADE classification (originally A D E classifications) is the complete list of simply laced Dynkin diagrams or other mathematical objects satisfying… … Wikipedia
Platonic solid — In geometry, a Platonic solid is a convex polyhedron that is regular, in the sense of a regular polygon. Specifically, the faces of a Platonic solid are congruent regular polygons, with the same number of faces meeting at each vertex; thus, all… … Wikipedia
Octahedral symmetry — The cube is the most common shape with octahedral symmetry A regular octahedron has 24 rotational (or orientation preserving) symmetries, and a symmetry order of 48 including transformations that combine a reflection and a rotation. A cube has… … Wikipedia
Dihedral group — This snowflake has the dihedral symmetry of a regular hexagon. In mathematics, a dihedral group is the group of symmetries of a regular polygon, including both rotations and reflections.[1] Dihedr … Wikipedia